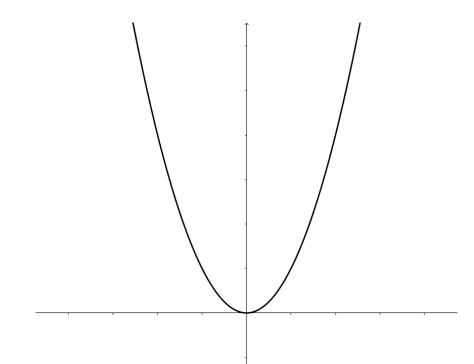
## Die quadratische Funktion $y = ax^2 + c$

| a) $y = \frac{1}{3}x^2 - 4$  | breiter als NP<br>schmaler als NP | nach oben geöffnet nach unten geöffnet $S(\  \ )$     |  |
|------------------------------|-----------------------------------|-------------------------------------------------------|--|
| b) $y = -2x^2 - 0.5$         | breiter als NP<br>schmaler als NP | nach oben geöffnet nach unten geöffnet $S(\mid \mid)$ |  |
| c) $y = \frac{4}{5}x^2 + 2$  | breiter als NP<br>schmaler als NP | nach oben geöffnet nach unten geöffnet $S(\  \ )$     |  |
| d) $y = 0.7x^2 - 1$          | breiter als NP<br>schmaler als NP | nach oben geöffnet nach unten geöffnet $S(\  \ )$     |  |
| e) $y = -3x^2 + \frac{2}{3}$ | breiter als NP<br>schmaler als NP | nach oben geöffnet nach unten geöffnet $S(\  \ )$     |  |
| f) $y = -1.2x^2 - 1$         | breiter als NP<br>schmaler als NP | nach oben geöffnet nach unten geöffnet $S(\  \ )$     |  |


Skizziere möglichst genau die Grafen der Funktionen in das Koordinatensystem. Die Normalparabel  $y = x^2$  ist eingezeichnet.

$$y_1 = \frac{1}{2}x^2 + 1$$

$$y_2 = -1,5x^2 - 2$$

$$y_3 = 3x^3 - 1$$

$$y_4 = -\frac{1}{4}x^2 + 3$$

